
Eudaemon: Involuntary and On-Demand Emulation
Against Zero-Day Exploits

Georgios Portokalidis
porto@few.vu.nl

Herbert Bos
herbertb@cs.vu.nl

Department of Computer Science, Faculteit der Exacte Wetenschappen
Vrije Universiteit Amsterdam

De Boelelaan 1081, 1081 HV Amsterdam, Netherlands

ABSTRACT

Eudaemon is a technique that aims to blur the borders be-
tween protected and unprotected applications, and brings
together honeypot technology and end-user intrusion detec-
tion and prevention. Eudaemon is able to attach to any
running process, and redirect execution to a user-space em-
ulator that will dynamically instrument the binary by means
of taint analysis. Any attempts to subvert control flow, or
to inject malicious code will be detected and averted. When
desired Eudaemon can reattach itself to the emulated pro-
cess, and return execution to the native binary. Selective
emulation has been investigated before as a mean to heal
an attacked program or to generate a vaccine after an at-
tack is detected, by applying intensive instrumentation to
the vulnerable region of the program. Eudaemon can move
an application between protected and native mode at will,
e.g., when spare cycles are available, when a system policy
ordains it, or when it is explicitly requested. The transi-
tion is performed transparently and in very little time, thus
incurring minimal disturbance to an actively used system.
Systems offering constant protection against similar attacks
have also been proposed, but require access to source code
or explicit operating system support, and often induce sig-
nificant performance penalties. We believe that Eudaemon
offers a flexible mechanism to detect a series of attacks in
end-user systems with acceptable overhead. Moreover, we
require no modification to the running system and/or instal-
lation of a hypervisor, with an eye on putting taint analysis
within reach of the average user.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—In-
vasive software; C.2.0 [Computer-Communication Net-
works]: General—Security and protection

General Terms

Security, Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

‘Greeks divided daemons into good and evil cate-
gories: eudaemons (also called kalodaemons) and
kakodaemons, respectively. Eudaemons resem-
bled the Abrahamic idea of the guardian angel;
they watched over mortals to help keep them out
of trouble. (Thus eudaemonia, originally the state
of having a eudaemon, came to mean “well-being”
or “happiness”.)’ [Wikipedia]

1. INTRODUCTION
Sophisticated high-interaction honeypots like Argos [28],

Minos [11], and Vigilante [24] all use dynamic taint analy-
sis, as pioneered by Dening [15] and evolved by Newsome
and Song to capture zero-day attacks in TaintCheck [27].
In essence, data originating from suspicious origins (e.g.,
network data) are tagged “tainted”, and an alert is raised
when they are used to divert control flow, or when they are
executed. In practice, taint analysis is performed using em-
ulators or binary re-writing tools and incurs an overhead
ranging from one to several orders of magnitude. As such,
honeypots are ill-suited for full-time deployment on end-user
production systems. Additionally, current honeypots have
several fundamental disadvantages that severely limit their
usefulness [19, 39]:

1. Honeypot avoidance: an attacker may create a hitlist
containing all hosts that are not honeypots and attack
only those machines.

2. Configuration divergence: the configuration of honey-
pots often does not match exactly the configuration
of production machines. For instance, users may have
installed different versions of the software, plugins, or
additional programs. Honeypots only reflect a limited
set of configurations. Indeed, high interaction honey-
pots typically have a single configuration.

3. Management overhead: honeypots require administra-
tors to manage at least two installations: one for the
real systems, and one for the honeypot.

4. Limited coverage: even if a honeypot covers a sizable
number of IP addresses, it may take a while before it
gets infected. This is especially true if the honeypot
only covers dark IP space. Moreover, the address space
that is covered is limited by the amount of traffic that
can be handled by a single honeypot.

287



5. Server-side protection: most honeypots mimic servers,
by sitting in dark IP space and waiting for attackers to
contact them. Unfortunately, the trend is for attackers
to move away from the servers in favour of client-side
attacks [16, 30].

Other intrusion detection methods that do not rely on
taint analysis and perform better than it do exist, but suf-
fer from other problems. Measures like StackGuard [12],
and address/instruction set randomisation [8, 18] are cheap,
but can be sometimes overcome [31] and do not enable the
generation of any type of “vaccine” for the exploited fault.
Replaying identified attacks against high-interaction honey-
pots has been suggested [24, 35] to address the latter is-
sue, but successful replaying remains a subject of research
in the presence of challenge/response authentication [13, 21].
Moreover, heavily instrumented applications or machines
that serve as replay targets for many alerts do not scale
easily.

To solve the honeypot problems mentioned above, without
sacrificing the generation of valuable data about the attack,
we propose to turn end-user hosts into heavily instrumented
honeypots. This can be achieved by transparently switching
any application between native and intensely instrumented
execution, whenever desired and in a timely manner. Pre-
vious work in this area proposed selective protection of a
particular segment of an application [32, 23]. Running the
segment in instrumented mode provides the means to gen-
erate patches that ‘fix’ the faults. However, these solutions
are dependent on a detector that will initially identify the
attacks. We therefore claim that they are complementary to
Eudaemon.

As an alternative, Ho et al. investigated ways to speed up
taint analysis so as to make it deployable as a full-time solu-
tion on production machines [4]. Their solution is based on
a virtual machine (VM), that transfers execution to a modi-
fied Qemu [6] emulator, whenever tainted data are read into
the system or processed. They achieve much better perfor-
mance than other systems providing system-wide protection,
but the slow-down is still significant (a factor 2 on average).
In addition, they require the installation of a modified Xen
hypervisor on the machine which in practice hinders its de-
ployment on the majority of home users’ PCs. Finally, while
full-system protection is attractive as it also catches attacks
on the kernel, the downside is that it becomes harder to
provide fine-grained analysis of the actual program under
attack.

Ideally, one would make every host operate under heavy-
weight instrumentation constantly so as to provide full-time
safety. Unfortunately, as we have seen, doing so is impracti-
cal (at least in the foreseeable future) due to the associated
overhead which would likely result in a reduction in user
productivity. On the other hand, we propose that it may be
possible to explicitly switch to heavily instrumented ‘hon-
eypot mode’ under certain conditions, provided the condi-
tions are such that they strike a a balance between increased
protection and performance. In the remainder of this sec-
tion, we sketch two such scenarios: idle-time honeypots, and
honey-on-demand.

Idle-time honeypots

Studies suggest that PCs tend to be idle more than 85%
of the time [17]. This refers to both idleness due to lack
of user interaction (idle desktop), and idleness in terms of

processing (idle CPU). Client machines display both types,
but the former presents an interesting opportunity, and can
serve as the condition that triggers the switch to honey-
pot mode. Much like a screen-saver protecting the screen
from damage while the user is away, turning a machine to a
honeypot protects running processes (e.g., instant messen-
gers, p2p programs, system services etc) from attacks such
as buffer overflows, code injection etc. While acting as a
honeypot the machine behaves exactly as it did before, with
the sole difference being a reduction in processing speed.

If at any time, any host can be a honeypot, the rules of
the game for the attackers change significantly. For instance,
they can no longer harvest a set of IP addresses in advance,
because what appears to be a suitable target now may be
a heavily instrumented honeypot by the time you attack
it. As long as some machines in the set run as honeypot,
the attacker risks being exposed. As a result, important
classes of attack are rendered obsolete, and problems 1-4
are resolved.

Honey-on-demand

An alternative application of Eudaemon is sometimes pop-
ularly referred to as ‘the big red button’, i.e., a button that
users may press when they are about to access an unknown
and possibly suspicious website, or when they open attach-
ments, view images or movies, etc. Pressing the button will
make the application run in honeypot mode, heavily instru-
mented and safe against client-side exploits.

As it may often seem ill-advised to depend on the user
for making such decisions (on the other hand, similar prin-
ciples are used extensively in a modern OS like Windows
VistaTM), we stress that the ‘big red button’ is a metaphor.
It represents a generic interface for determining which ap-
plication should be protected when. Besides end users, the
interface could be used by applications. For instance, mail
readers could demand to be run in emulation mode when
opening an email classified as spam, or from an unknown
sender. Also, faster but less accurate intrusion detection
systems or access control systems could trigger a switch to
honeypot mode in the event of an anomaly. Alternatively,
other mechanisms, such as whitelists of network addresses
could be used to decide whether a web browser should switch
to emulated execution.

Using Eudaemon in the above manner helps us tackle the
last and potentially most important issue with current hon-
eypots. Since 2003, client-side attacks are increasingly com-
mon. Hackers take over client machines and group them into
botnets that are subsequently used for unwanted and illegal
activities, such as spamming, on-line fraud, distributed de-
nial of service (DDoS) attacks, and harvesting of passwords
and credit cards. Such attacks are not caught by most cur-
rent honeypots and client honeypots are much less common,
and for the few that do exist (e.g., [37, 25]), the other prob-
lems remain.

Finally, Eudaemon may be used for servers. Often, when a
vulnerability is announced, there is not yet a patch available.
Even if there is a patch available, administrators may be
reluctant to apply it right away. If the server is not too
heavily loaded, Eudaemon may be used to run the server
in safe mode, thus buying precious time until the patch can
be applied. Such usage escapes the honeypot and client-side
exploits domain, and enters the area of intrusion prevention.

288



Contribution: Eudaemon

In this paper, we present the design, implementation and
evaluation of Eudaemon, a ‘good spirit’ capable of temporar-
ily possessing unmodified applications at runtime to protect
them from evil. The contribution of this paper is a novel
idea for applying honeypots, with a wide range of possi-
ble applications. Our focus is primarily on the techniques
for possession, protection, and release, rather than on the
applications that may make use of them. In addition we
explain in detail how such a switch to and from honeypot
mode works in a modern operating system.

In a nutshell, when Eudaemon receives the order to pos-
sess a process, it attaches to the process in such a way that
we can observe and control the execution of the target pro-
cess, and examine and change its core image and registers.
Most modern OSes have functionality for doing so (for in-
stance, UNIX provides the ptrace system call for this pur-
pose, while Windows XP allows for the creation of threads
in target processes). We temporarily pause the execution
of the victim process, save its processor state, and inject a
small amount of shellcode in its address space. The shell-
code calls a modified version of an open source emulator
which is linked in as a library. The emulator is started with
the processor state that was previously saved. From that
point onwards, execution of the process code continues, ex-
cept that the emulator provides full-blown taint analysis,
and raises an alert whenever data with suspicious origins
(e.g., the network) is used in a way that violates the secu-
rity policy. When Eudaemon receives the order to release
the process, it halts the process temporarily, removes itself
from the process and resumes the process in native mode.
In other words, network applications (e.g., peer-to-peer or
FTP download systems), besides being inactive for a few
milliseconds, are not interrupted for the possession period.

The remainder of this paper is organised as follows. In
Section 2 we place our work in the context of related work.
Section 3 presents an overview of the system’s design. Imple-
mentation details are given in section 4. Section 5 evaluates
performance, and conclusions are drawn in Section 6.

2. RELATED WORK
Taint analysis is used by many projects such as TaintCheck

[27], Minos [11], Vigilante [24], and Argos [28]. Most of the
existing work assumes deployment on dedicated honeypots.
This is mainly due to performance reasons. Likewise, client-
side honeypots tend to be dedicated machines also [37, 25].
As a result, these techniques suffer from most of the prob-
lems identified in Section 1.

An interesting exception includes the work on speeding up
taint analysis by switching between a fast VM and a heavily
instrumented emulator by Ho et al. discussed earlier [4].
One drawback of the method (besides an overhead that is
still considerable compared to native execution) is that it can
only be installed by, say, home users willing to completely
reconfigure their systems to run on a hypervisor.

In contrast, we deal with performance penalties by run-
ning in slow mode on demand. In essence, we slice up pro-
gram execution in the temporal domain. A different way
of slicing is known as application communities [22]: assum-
ing a software monoculture, each node running a particular
application executes part of it in emulated mode. In other
words, applications are sliced up in the spatial domain and

a distributed detector is needed to cover the full application.
Eudaemon directly benefits individual installations without
relying on a monoculture. In practice, the OS used by com-
munities tends to be uniform, but variation exists in applica-
tions, due to plug-ins, customisations and other extensions.

In a later paper, the same groups employs selective em-
ulation to provide self-healing software by means of error
virtualisation [23]. Again slicing is mostly in the spatial
domain. As far as we are aware, neither of these projects
supports taint analysis. Indeed, it seems that for meaningful
taint analysis, the tainted data must be tracked through all
functions and, thus, selective emulation may be more prob-
lematic. At any rate, as we mentioned earlier, the Eudaemon
technique is complementary to [23] and could be used as an
attack detector.

Another interesting way of coping with the slowdown (and
indeed, a way of slicing in the temporal domain for servers)
is known as shadow honeypots [5]. A fast method is used to
crudely classify certain traffic as suspect with few false neg-
ative but some false positives. Such traffic is then handled
by a slow honeypot. Tuning the classifier is delicate as false
positives may overload the server. In addition, shadow hon-
eypots suffer from the problems of configuration and man-
agement overhead identified in Section 1.

Rather than incurring a slow-down at the end users’ ma-
chine, many projects have investigated means of protection
for services running on user machines by way of signatures
and filters. Such projects include advanced signature gen-
erators (e.g., Vigilante, VSEF, and Prospector [24, 9, 33]),
firewalls [38], and intrusion prevention systems on the net-
work card [14].

For instance, Brumley et al. propose vulnerability-based
signatures [9] that match a set of inputs (strings) satisfy-
ing a vulnerability condition (a specification of a particular
type of program bug) in the program. When furnished with
the program, the exploit string, a vulnerability condition,
and the execution trace, the analysis creates the vulnerabil-
ity signature for different representations, Turing machine,
symbolic constraint, and regular expression signatures.

Packet Vaccine [36] detects anomalous payloads, e.g., a
byte sequence resembling a jump address, and randomises
it. Thus, exploits trigger an exception in a vulnerable pro-
gram. Next, it finds out information about the attack (e.g.,
the corrupted pointer and its location in the packet), and
generates a signature, which for instance can be based on
determination of the roles played by individual bytes. To
determine this, Packet Vaccine scrambles individual bytes
in an effort to identify the essential inputs.

Vigilante relies on the possibility to replay attacks in or-
der to generate Self-Certifying Alerts (SCAs), an extremely
powerful concept that allows the recipient of an alert to
check whether the service is indeed at risk [24]. If so, it
may automatically generate a signature. The false positives
rate seems to be zero.

As mentioned earlier, the signature generators for the
above projects may be capable of handling zero-day attacks,
but they produce them by means of dedicated server-based
honeypots. Hence, they do not cater to zero-day attacks on
client applications. To some extent the problem of zero-day
attacks also holds for virus scanners [34], except that mod-
ern virus scanners do emulate some of the data (e.g., some
email attachments) received from the network. However,
remote exploits are typically beyond their capabilities.

289



We should mention that we currently have a few signature
generators for our emulator (known as Sweetbait [28] and
Prospector [33], respectively). As part of our future work,
we intend to use different types of signature generator (some
with light-weight instrumentation, and other with heavy-
weight analysis), so that different users may apply different
forms of analysis to the same attack, hopefully yielding a
more complete picture of the attack.

Protection mechanisms such as StackGuard [12], Point-
Guard [10], and address space and instruction set randomi-
sation [8, 18] protect against certain classes of attack, but
are unable to generate much analysis information about the
attack, let alone generate signatures.

Many groups have tried to use such fast detection meth-
ods like address space randomisation and perform more de-
tailed instrumentation on a different host by replaying the
attack [35]. In our opinion, replaying is still difficult due to
challenge/response authentication, although promising re-
sults have been attained [13, 26]. More importantly, the
heavily instrumented machines that perform the analysis
may become a bottleneck if many attacks are detected. Eu-
daemon inherently scales because it employs the users’ ma-
chines.

Process hijacking is a common technique in the black-hat
community [2, 29]. By injecting code into live processes,
such attacks are hard to detect, as no separate process is
created and no attack can be found at the file-system level.
Also, Nirvana, as described by Bhansali et al in [7], is an
engine for the Windows OS that permits detailed instruction
level tracing by means of simulation, and holds the ability
to transparently attach on a running process.

To conclude this section, in 2005 Butler Lampson pro-
posed to partition the world into two zones: green (safe)
and red (unaccountable) [20] and use a VM to isolate the
two parts. While more work is clearly needed in this area,
we believe Eudaemon might be a step toward having the two
zones while maintaining an integrated view on the applica-
tions.

3. DESIGN
Eudaemon has been partially inspired by techniques used

by hackers and debuggers alike to attach to running appli-
cations, instead of requiring them to be loaded from within
the controlled debugger context. We use similar techniques
to hijack or possess a process transparently with the goal of
heavily instrumenting unmodified binaries to protect them
against remote exploit attempts.

Eudaemon has been designed to run as a system ser-
vice, where requests to possess or release applications can
be made. The terms possession and release will be used
to describe the act of switching a process to emulated and
native execution respectively. A high level overview of the
system is shown in Figure 1. Requests to possess or release
an application can be issued based on any criterion, such as
an explicit user request, or as a result of persisting inactivity
at the host, as mentioned in the introduction.

After receiving a request ( 1©), Eudaemon immediately at-
tempts to attach to the target process to force it to run in an
emulator ( 2©). The complexity of the procedure varies de-
pending on the platform implementation, but most modern
operating systems do support (system) calls that implement
the desired functionality (e.g. Linux, BSD, and Windows
XP). Attaching to a process can be performed using its pro-

possessedEudaemon is notified

of fork

1

4

library

"inject" emulator

5

Possession/Release request

3

2

possessed

processes

not possessed

processes

process forks

Eudaemon possesses child

processes automatically

Eudaemon

System Processes

1

0

0

1

Figure 1: Eudaemon Overview

cess identifier (PID) alone. When threading is used, the
thread identifier (TID) can be used instead.

For safety, the operating system ensures that only a pro-
gram running under the same or super-user credentials is
able to attach to a given process. This scheme guarantees
that users cannot possess or release processes they do not
own.

When an emulated process spawns new processes ( 3©),
we can also request the automatic possession of its children
to enable Eudaemon to protect an application consisting of
multiple processes ( 5©). We emphasise that even in this
case a program need not be Eudaemon-enabled in any way.
The emulator library which manages execution makes sure
to notify the system on the creation of new processes ( 4©).
Threads can be handled internally, since all of them share
the same “possessed” address space, and the emulator can
proxy new thread requests.

3.1 Process Possession
Switching to emulated execution (possession), is accom-

plished by injecting code to perform this task within the
target process space. For threaded applications it is suffi-
cient to inject the code once, since all threads lie in the same
address space. Nevertheless, the amount of code required to
perform such a complex job can be significant. What this
implies is that the costs of copying or injecting the emulator
code within a process, could compromise the transparency
of the system.

We overcome such an eventuality by making the emulator
a dynamic shared library (known as DSO or DLL, depending
on the platform). Libraries impose some restrictions on the
included code, but on the other hand make code reusing
simple and efficient. When a DLL is loaded by multiple
processes, it is actually loaded once in system memory, and
only mapped in each process’s address space. As operating
systems allow libraries to be loaded either at runtime, or a
priori for every process, we have some freedom in how we
inject the emulator code efficiently and in a way that will
scale even when multiple targets are possessed. For more
details on loading the emulator in a process, we refer the
reader to Section 4.

290



to act as second stack

Newly mapped memory block

Heap can be shared

DATA

DATASTACK

HEAP

Unmapped

Data

TEXT

Figure 2: Process Memory Layout

After loading the necessary code in the target process, we
still need to activate it, and supply the required state so
that execution can resume virtually undisturbed. Acquiring
a target’s execution state is commonly performed by debug-
gers and we use the same technique. As we will explain
in detail shortly, supplying such state to the newly injected
code in the target, is more involved and requires that we
protect the integrity of the target. Phrased differently, our
code shares the target process’s address space, and we need
to isolate its memory.

Figure 2 shows the typical layout of a process’s memory.
Application code is loaded in what is called the text segment,
and it is protected by being marked read-only. Loaded li-
braries, even though not shown in the figure, also have their
corresponding code segments protected by being read-only,
and as such our code is implicitly protected. Process data
are stored mainly in two areas: the heap and the stack. Heap
size is dynamic, and grows towards larger addresses, while
stack is usually fixed, and is used as a LIFO queue. The
stack grows towards lower addresses.

Every thread of execution has its own stack, which in ar-
chitectures like the x86 is addressed using special CPU reg-
isters and implicitly updated by special instructions. As a
result, executing our code using the same stack as the pro-
cess code would lead to severe inconsistencies in the stack.
In contrast, heap memory is larger and allocated objects are
referenced explicitly by holding memory pointers. This per-
mits us to share the heap for any objects we need to allocate.
In both cases, however, we cannot rule out the possibility
that the program will access data owned by the library ei-
ther as a result of an error, or as part of a malicious attempt
to thwart its proper operation. We handle data protection
through the emulator, which we describe in more detail in
Section 3.3.

To call safely the code we have already injected, we first
map a memory segment in the target process that will serve
as a stack for the emulator. This way we ensure that both
our code and the process’s code can be run in parallel with-
out interfering with each other. The way this is accom-
plished depends on the underlying system. For example,

some systems allow a process to reserve a memory segment
in another process, while on others we are forced to inject a
piece of short lived code to perform the allocation.

In the latter case, we need to choose carefully the location
where to place the short lived activation code, so as to not
compromise the target’s integrity. One possible solution is
to choose an area in the target’s text memory space, save it,
and then overwrite it with the activation code. When the
activation code completes, the original code can be restored.
However, this process requires pausing all threads in order
to guarantee that the location will not be used while the
activation code resides there.

Ideally, we would like to avoid such overhead and prefer
to inject the code in a location that we know is no longer in
use. In practice, the binary object’s header that resides in
the text segment is often a feasible location. Certain bytes
in the header are used only when the executable is loaded by
the system in memory. Usage of executable header memory
to run code has been demonstrated before by virus writers
to inject parasitic code in running programs [3]. A more ex-
treme solution is to use the space left by compilers between
the functions of an application for performance reasons [1],
but we have not explored such a course in our implementa-
tion.

To activate the library, we use a part of the newly allo-
cated stack to store the state we extracted when we attached
to the target, and detach from the process. Finally, the ac-
tivation code calls a function in our library which takes over
the execution of the process.

3.2 Process Release
To return a process back to native execution the emula-

tor needs to be notified to clean up and export the state of
the process, as it would have been if the process has been
running natively all the time. Delivering such a notification
could be performed by various means, but to preserve se-
mantics similar to those of possession we chose once more to
inject deactivation code into the process. The code simply
performs a call within the library to deliver the notification.

If the call succeeds then Eudaemon needs to wait until the
emulator exits, and control is returned to the activation code
that was injected during possession. The remainder of that
code will notify Eudaemon that the process can be switched
back to native execution, and if necessary also release the
allocated second stack. To complete the switch, Eudaemon
reads the state of the process as exported by the library, and
reinstates it as the process’s native state.

3.3 Emulator Library
The emulator library is decoupled from Eudaemon, so that

it can be transparently replaced without affecting the sys-
tem’s operation. As long as the library adheres to Eudae-
mon’s predefined emulator interface, and the library itself
does not compromise the process, any implementation that
shields the process against attacks can be used. We now
describe at a high level the required interface for a library
to be used in Eudaemon, and also present the criteria that
need to be obeyed in the remainder of this section. The ex-
act library calls will be listed in Section 4. From a high-level
perspective, the desired interface consists of three functions:

• We need a function to check that the library is not al-
ready in control of the target process in order to handle
requests to possess a process that is already possessed.

291



To avoid possible conflicts the state of the library (ac-
tive/inactive) is exported via such a call.

• A function is needed to initialise and give control over
the process to the library. The function represents the
entry point of the library, where control is redirected
after setting up memory and process state. It should
neither fail nor return, unless there is an error in the
program itself or the library was notified to exit.

• The final function we require is one that signals the
emulator library to relinquish control of the process,
and return to the caller. This call need not be syn-
chronous, in the sense that the library does not need
to terminate immediately. Eudaemon will wait for the
process to complete the switch to native execution.

A more important aspect of the library is that it should
protect itself from unintentional or malevolent access of crit-
ical data. As we briefly mentioned earlier, a program could
access library data in stack or heap, and in that way compro-
mise the mechanism that is supposed to be protecting the
application. To guard against such a possibility we adopt a
memory protection method very similar to the one used in
the x86 CPU architecture (see Section 4.1.4 for details).

4. IMPLEMENTATION
We completed an implementation of Eudaemon on Linux.

We also completed most of the possession and release func-
tionality for Windows, while work on the required library-
based emulator is in early stages. Due to size restrictions, in
the remainder of this section, we only discuss in detail the
Linux implementation of the main components of our de-
sign: (i) a process emulator that implements taint analysis,
and (ii) Eudaemon possession and release.

4.1 SEAL: A Secure Emulator Library
SEAL is a secure, x86-based user-space process emulator

implemented as a library. It is based on Argos and employs
the same dynamic taint analysis [28]. In a nutshell, Argos
is a whole-system emulator and consists of a virtual CPU,
NICs, video card, etc. It marks all data arriving on its
virtual NICs as tainted and tracks them throughout their
lifetime in the system. Argos raises an alert when tainted
data is used in illegal ways (e.g., when it is executed).

We modified Argos in the following ways. First, we do not
desire whole-system emulation, so we ported the dynamic
taint analysis functionality to a user-space emulator. As
Argos shares its code base with Qemu [6], which includes a
user-space emulator, doing so was straightforward. Second,
a user-space emulator has no notion of virtual NICs, so we
had to modify the tagging mechanism. For instance, SEAL
tags bytes when they are read from sockets (and certain
other descriptors). Third, as the original process and SEAL
share the same address space, we had to protect data used
by SEAL from being clobbered by the process. Fourth, we
packaged SEAL as a library with a succinct interface. We
now discuss these issues and the general operation of SEAL
in detail.

4.1.1 Tagging Data

Processes read data by means of the read system call
which is used for sockets, files and pipes. To distinguish
suspect data from harmless input, we introduce a 64KB

bitmap (a bit for each one of the possible 216 descriptors
in Linux) that marks certain descriptors as tainted. Calls
to read result in data tagging only if a tainted descriptor
was used. We now describe how we monitor system calls to
taint descriptors. First, socket() and accept() both create
descriptors for network communication. As network data is
suspect, the descriptors are marked tainted. Second, open()
returns a descriptor for file access. Normally, we ignore this
call, but users are allowed to mark certain directories as un-
safe to capture exploits in files. Consider a malicious image
in an attachment that triggers a vulnerability in the viewer.
SEAL scans the path name provided to open, and taints the
descriptor if the file is in a directory marked unsafe (e.g.,
/tmp, or /home/...). Third, the pipe() call creates a pair
of descriptors for inter-process communication. SEAL con-
siders input from another process as unsafe, since it is of
unknown origin, and taints both descriptors. Finally, dup()
and dup2() create a copy of a descriptor. If the original
descriptor is tainted, we also taint the copy.

Besides the read() system call, programs can access input
by means of message passing and memory sharing. Mes-
sages can be exchanged either over a network socket, or a
message queue. In both cases, we can trivially monitor the
message receiving system calls to taint incoming data. Han-
dling shared memory is more difficult. Programs may either
map files into their address spaces, or share memory pages
with other programs. Simply tainting the memory is not
sufficient, because it would miss updates made by other pro-
cesses. We therefore included a sticky flag for every tainted
page. Asserting this flag ensures that the page will be al-
ways considered tainted ignoring all writes performed by the
process, until it is unmapped or not shared anymore.

4.1.2 Tracking Tainted Data

Data items tagged as tainted are tracked during execution.
Tracking is achieved by instrumenting the guest’s instruc-
tions to propagate tags. For example, arithmetic operations
like ADD and SUB, are instrumented to taint their result,
whenever they are used with a tainted operand. In a similar
way, MMU operations such as load and store, copy tag val-
ues between registers and memory. The tagging granularity
is variable. Memory data are tagged per byte, while a single
tag is assigned to each of the 8 CPU registers. MMX reg-
isters are treated as memory, and have byte granularity as
well. As a result, every byte that depends on network data
can be monitored.

Tags in SEAL are accessed through a one-level page table.
We partition memory space in pages, and only when data
belonging to a memory page are tainted, tag space for that
page is allocated and the corresponding tags asserted. The
page table contains pointers to structures actually contain-
ing the tags for each page, where a tag can either be a single
bit, or a byte. While it would have been faster to use a one-
dimensional tag array, we wanted to keep the memory foot-
print of the emulator as small as possible, especially since
SEAL and user application share the same address space.
In addition, by aligning the dynamically allocated blocks of
tags on addresses that are multiples of four, the least signif-
icant bits of page tables entries are unused, and can be used
to track inexpensively the sticky page flag mentioned above.

When a typical Linux process is running SEAL using sin-
gle bit tags, the amount of memory X (in MB) that can be
used by the process can be expressed as: X + (X/8) + 4 <

292



TARGET

PROCESS

PROCESS

STATE

ELF
HEADER

INJECT ACTIVATION
SHELLCODE

READ PROC
STATE

DISCOVER
LIBRARY SYMBOLS

2

1

4

dlopen()

TXT SECTION

LD_PRELOAD

ATTACH

EUDAEMON

3

STACK

5

REGISTERS

HEAP

LIBRARIES

ARGOS−USER

FP, MMX

ARGOS−USER

Figure 3: Process possession: phase 1

TARGET

PROCESS

ELF
HEADER

trap

mmap2()

ShellCodeEUDAEMON

INJECT

TXT SECTIONargos_isrunning()

CHECK

PROCESS STATE

argos_initandrun(state) LIBRARIES

ARGOS−USER

STACK

HEAP

1

2

3
4

Figure 4: Process possession: phase 2

08048000−08049000 r−xp 00000000 03:04 4450978 loop
08049000−0804a000 rw−p 00000000 03:04 4450978 loop
40000000−40016000 r−xp 00000000 03:04 719528  /lib/ld−2.3.6.so
40016000−40018000 rw−p 00015000 03:04 719528  /lib/ld−2.3.6.so
40018000−40019000 r−xp 40018000 00:00 0       [vdso]
40019000−4001a000 rw−p 40019000 00:00 0
40034000−400c1000 r−xp 00000000 03:04 3140602 libseal.so.0.2
400c1000−400c9000 rw−p 0008c000 03:04 3140602 libseal.so.0.2
400c9000−42118000 rw−p 400c9000 00:00 0
42118000−42240000 r−xp 00000000 03:04 719531  /lib/libc−2.3.6.so
42240000−42241000 r−−p 00127000 03:04 719531  /lib/libc−2.3.6.so
42241000−42244000 rw−p 00128000 03:04 719531  /lib/libc−2.3.6.so
42244000−42246000 rw−p 42244000 00:00 0
42246000−42267000 r−xp 00000000 03:04 719535  /lib/libm−2.3.6.so
42267000−42269000 rw−p 00020000 03:04 719535  /lib/libm−2.3.6.so
bfa87000−bfa9d000 rw−p bfa87000 00:00 0       [stack]

Figure 5: Contents of a /proc/[pid]/maps file - note
the presence of libseal

3072 (the maximum addressable virtual memory being 3 GB
or 3072 MB, the page table taking up to 3 MB, and 1 MB
taken by library code and statically allocated data). So,
a process under SEAL can use up to 2727 MB of the vir-
tual address space, reducing its maximum available memory
by about 9.64%. At runtime, the actual memory footprint
of the library depends on application behaviour, and the
amount of tainted data. We can calculate a 12.5% upper
boundary for the memory overhead imposed by the library,
if we assume all process data are tainted and a single bit is
used for each byte.

4.1.3 Attack Detection

Most exploits attempt to redirect control to shellcode pro-
vided by an attacker, or to code that is already available
(libc). They do this either by loading an attacker supplied
value on the instruction pointer (EIP), or by injecting in-
structions within a program’s control flow. On x86 CPUs
EIP is manipulated using one of the call, jmp, and ret in-
structions. SEAL monitors these instructions, and checks
that none of them is used with tainted arguments, or results
in EIP pointing to tainted data. Even in the case where EIP
is not directly pointed to a tainted location, “walking in” an
area with tainted code will eventually cause an alert since
attackers are bound to use a checked instruction (such as
jmp, call, or ret). In other words, SEAL is able to detect
most overwriting and code injecting exploits.

After an attack is detected, SEAL generates an alert and
logs the state of the emulator to persistent storage. It scans
the victim process’s memory and logs all locations that have
been marked tainted, as well as the virtual CPU’s registers,
and the type of the offending instruction. It also collects
information (like pid, name, and DLLs) about the victim

application. The logs are subsequently used by signature
generators to create anti-measures. Signature generation in
Argos/SEAL is beyond the scope of this paper. Interested
readers are referred to Sweetbait [28] and Prospector [33].

4.1.4 Protecting SEAL Data

As application and SEAL reside in the same address space,
we need to protect emulator data against malicious or ac-
cidental accesses by the application. As mentioned earlier,
our solution resembles memory protection in x86 architec-
tures. The x86 CPU contains a hardware memory manage-
ment unit (MMU) that partitions the linear physical mem-
ory space into pages of virtual memory space. The MMU is
responsible both for translating a virtual address to a phys-
ical one, as well as enforcing a page protection mechanism.
This way every process is assigned each own virtual address
space isolating it from other processes, and protecting kernel
space from the processes.

We adopt the same principle by using a virtual MMU
that enforces page level protection. SEAL instruments all
memory accesses in the application’s code to go through the
virtual MMU, where they are validated to make sure that
library owned memory is not accessed. Every page allocated
by the library is marked with a flag that allows the virtual
MMU to perform the validation. The structure that these
flags are stored in is of small importance; a reasonable choice
in our case was to use one of the extra bits in the page table
described in Section 4.1.2.

Keeping track of protected memory pages is straightfor-
ward. It only requires that on allocation and release of heap
memory the library updates the corresponding bits. The
virtual MMU can also be used to protect the stack, global
library data, and library read-only data to defend against
information leakage that could be exploited by attackers.
Obviously, it protects its own bitmap and data, while the
code is protected in the same way as all other code.

4.1.5 Checking System Calls

Monitoring the use of tainted data in critical operations is
the same as in the whole-system emulator. However, being
in user-space offers us the chance to expand operations that
are monitored to include certain system calls. In theory,
we could apply policies concerning tainted arguments to all
system calls, but in practice it makes sense primarily for
the exec() system call which executes a file by replacing the
image of the current process with the one in the file. It
has been frequently exploited by overwriting the arguments

293



to load arbitrary programs. By checking the arguments for
tainted tags, SEAL shields programs against such attacks.

4.1.6 Signal Handling

SEAL handles signals transparently to the application.
Upon receiving control of a process, original signal handlers
are replaced with the emulator’s handler. This single signal
reception point queues arriving signals that will be processed
at a later time. System calls used to update signal handlers
and masks, are also intercepted to keep track of the process’s
signal related behaviour.

Such an approach is necessary to ensure that native code
is never called directly, but to allow also switching to emula-
tion mode while executing a signal handler at the target. To
clarify this point, we will briefly describe how the Linux ker-
nel handles signals. Upon signal delivery, a new temporary
execution context is created by the kernel for the handler to
execute, and the previous context is saved in user-space. Be-
fore relinquishing control to the signal handler, which runs in
user-space, a call to sigreturn() is injected in the temporary
handler context. This system call serves the sole purpose of
returning control to the kernel, so that the original execution
context can be restored. When SEAL is in place, it imitates
the kernel. As a result, if the emulator receives control while
a signal handler is executing, it is still able to switch to the
process’s original execution context in emulation mode by
intercepting sigreturn().

4.1.7 Eudaemon Support

The SEAL user-space emulator as described so far, can be
used to run applications securely, but cannot be used with
Eudaemon yet. To enable the transition of a process from
native to emulated execution we need further extensions.
Primarily, SEAL needs to be in a form which can be dynam-
ically included in any process. Dynamic shared libraries or
DLLs provide exactly that. Compiling SEAL as a dynamic
shared library is trivial, but it requires a simple interface
to interconnect with Eudaemon. We use the following as a
basic interface for interconnection with Eudaemon:

• bool seal isrunning(); this function receives no argu-
ments. It returns a boolean value that specifies whether
the emulator is active at the moment the function was
called.

• void seal initandrun(struct cpu state *st). This is the
library’s main entry point. It initialises the emulator
with the snatched process state such as register val-
ues, MMX, and floating-point state, and commences
emulation.

• bool seal stop(); this function requests that the emula-
tor stops, and consequently that seal initandrun() re-
turns. It returns true on success and false if SEAL
is not actually running. Calling this function does
not cause the emulator to exit immediately. Instead
it waits until the virtual CPU reaches a state that is
safe to return.

Finally, the exec() system call also requires modification.
Compiling SEAL as a library means that if the current pro-
cess image is replaced with a different executable by exec(),
we have to re-attach and switch it to emulation mode, or let
the newly called binary execute natively. By default we use
the latter option. To support the former, we permit exec()

to signal Eudaemon of the event, so that the new process
can be forced into emulation mode once again.

4.2 Possession And Release
Process possession and release are two distinct operations

that are independent in the sense that no state needs to
be preserved between the two. In other words, a possessed
process holds all the information needed for its release. The
only prerequisite for these operations is that the emulator
library is present in the target process’s address space.

The finer details of injecting the library in the target pro-
cess, as well as activating and deactivating it are in some
cases very dependent on the underlying OS platform. In the
remainder of this section, we elaborate on the implementa-
tion details of Eudaemon on Linux.

We use the shared library pre-loading mechanism in Linux
to transparently load the emulator library in the address
space of every process. In detail, Linux and other Unix based
systems support the pre-loading of dynamic shared libraries
in applications using dynamic linking. This is accomplished
by either defining the environment variable LD PRELOAD
to include the desired library, or by including it in a config-
uration file (like /etc/ld.so.preload).

Eudaemon employs the Unix system call ptrace(), which
was originally intended mainly for debugging purposes. Much
like a debugger, we use ptrace() to achieve possession and
release without process and OS cooperation. In summary,
ptrace() allows one process to attach itself to another, as-
suming the role of its parent. The target is stopped and
the attaching process receives control over it. The attach-
ing process is then able to read the target’s state, such as
register values, floating point (FP) and MMX state, as well
as memory data. It is also able to resume execution of the
target process, while receiving notification of events such
as system call execution and signal reception. This allows
Eudaemon to access process state, and to inject the instruc-
tions needed to perform the switch from native execution to
emulation and vice versa.

4.2.1 Process Possession

The possession operation can be logically split in two
phases. The first phase is shown in Figure 3 and consists
of the following steps: (1) attach to target process; (2) dis-
cover necessary emulator library symbols in the target; (3)

modify activation shellcode using the symbol addresses ac-
quired during step 2. Each of these steps will be explained
in more detail below.

To possess a process we first attach to it, and wait until
the target is effectively stopped by the OS. Subsequently, we
look up the target’s memory mappings to find out the loca-
tion of the emulator library in its address space. We accom-
plish this by looking up /proc/[pid]/maps, where [pid] is the
target PID. This is a file under the special proc filesystem,
and contains a description of the memory mappings used by
each process. Figure 5 shows the contents of such a file. Ev-
ery line of this file corresponds to a memory mapping and
provides information on its address range, protection bits,
size, and source filename if applicable. We are thus able to
locate the address where the emulator library was loaded
in the target, as well as in Eudaemon itself. Observe that
libseal is listed twice in the file. The reason for this is that
bss is also listed.

With this information, we can at runtime look up any

294



dlopen()

TARGET

PROCESS

PROCESS
STATE

ELF
HEADER

1

2

ATTACH

EUDAEMON

HEAP

trap

SAVE

PROC STATE

RESTORE

SHELLCODE

INJECT DEACTIVATION

TXT SECTION

LD_PRELOAD

DISCOVER
LIBRARY SYMBOLS

FP, MMX

argos_stop()

REGISTERS

STACK

LIBRARIES

ARGOS−USER
ARGOS−USER

Figure 6: Process release: phase 1

trap

PROCESS

ELF
HEADERREAD EMULATOR

STATE

TARGET

ARGOS−USER

LIBRARIES

HEAP

TXT SECTIONargos_initandrun()

RESTORE PROC

EUDAEMON

REGISTERS

FP MMX

STATE

munmap()

mmap2()

STACK

2

1

3

Figure 7: Process release: phase 2

emulator symbol in the target. We accomplish this by also
loading the emulator dynamic shared library in Eudaemon,
using dynamic loading and linking, and calculating the off-
set of the symbol from the beginning of the dynamic shared
library. The offset of the symbol remains the same in the tar-
get, so we can therefore calculate the address of the symbol
in the target process. Interesting symbols at this point are
the function that returns whether the emulator is already
running (seal isrunning()), and the one starting the emula-
tor (seal initandrun()). Using their addresses we setup the
SEAL activation shellcode before injecting it in the target.

At this point we read the target process’s state that we
need to pass to the emulator. It consists of the values of
general purpose and floating point registers, as well as state
used by MMX instructions. Finally, before proceeding to
the next phase we inject the activation shellcode, in the ELF
header of the executable which contains 240 bytes that re-
main unused after loading the binary into memory.

The second phase of possession starts by redirecting the
target’s execution flow to the beginning of the injected shell-
code. The actions performed collectively by Eudaemon and
the shellcode are shown in Figure 4, and can be summarised
into the following: (1) check that the target is not already
possessed, (2) allocate a memory block to be used as stack
by the emulator library; (3) store the process state saved
during the first phase in the memory block obtained in step
2; (4) call the initialisation and execution function of the
emulator; (5) detach from the target process.

To avoid starting a possession procedure for an already
possessed process, we first perform a call into the library to
discover whether it is already running. The return value of
the call is placed within the eax register. To retrieve the
result, we place a trap instruction right after the call that
returns control back to Eudaemon, where we can actually
check whether we should proceed with the possession, or
fallback reinstating the saved process state and detach.

Assuming that the process is not already possessed, exe-
cution resumes, and we attempt to allocate a memory area
that will be used as a stack for the execution of the emula-
tor. A new stack is necessary, since sharing the active stack
between the emulator and the emulated code would lead
to error. We use mmap() to request a new memory area
from the OS, and verify its successful completion by using
ptrace() semantics to receive control in Eudaemon right after
the return of the system call.

Assuming control after the return of mmap() is also neces-
sary to supply the required arguments to the emulator. The

arguments comprise of the process state that we read dur-
ing the first phase of the possession, which is the exact state
where native execution stopped. We inject the data into the
newly allocated stack, while also reducing its length by the
size of the data being stored.

Placing the process state in the emulator stack is the last
action performed by Eudaemon, which then detaches and
exits. The shellcode within the target process performs the
last step, and calls the emulator main routine, which ini-
tialises itself and starts the emulation.

4.2.2 Process Release

Releasing a process is also partitioned in two phases with
the first being similar to possession. An overview is shown
in Figure 6, and the additional steps in respect to possession
(listed in Section 4.2.1) are the following: (1) call the emu-
lator’s stop routine, and at the same time discover whether
it was running; (2) reinstate the saved process saved state,
and allow it to resume execution.

Just like in possession, Eudaemon also attaches to the tar-
get process, looks up the required library symbols in the tar-
get, sets up the shellcode, and injects it. The additional as-
sembly code introduced in the process does not overlap with
the shellcode injected during possession, and is quite small
in size. It simply calls the seal stop() function in the emu-
lator, requesting it to exit. The same function also checks
that the emulator is running, so there is no need to perform
an additional call to retrieve its state beforehand.

If the process was possessed, seal stop() initiates an exit
from the emulator and reports success, while otherwise it
returns error. We receive control back in Eudaemon, by
inserting a trap instruction right after the call. We proceed
to read its return value to determine whether the release
request was valid, in which case Eudaemon waits for the
emulator to exit. In any other case, it restores the saved
process state allowing it to resume execution uninterrupted.

When the emulator exits, execution returns to the origi-
nal shellcode planted during possession. The remainder of
that code in conjunction with Eudaemon is responsible for
switching a process’s execution back to normal. Figure 7
shows an overview of this procedure, which in brief is: (1)

recover the emulated process’s state, stored in the emulator
stack; (2) release the memory block that is used as stack; (3)

restore the state read in step (1) as native process state.
As soon as the emulator exits, a trap instruction is ex-

ecuted to notify Eudaemon of the event. We then re-read
the target’s state to discover the address of the stack being

295



used, and consequently the location of the emulator state
that corresponds to the real process state we need to rein-
state for release to be carried out. After recovering the state,
the target is resumed and the stack we allocated is freed us-
ing munmap(). Once again, we use ptrace() semantics to
receive control when this system call returns, to finally re-
instate process state. Finally, we detach from the process
effectively completing the release of the process.

5. EVALUATION
We evaluate how Eudaemon performs in two aspects: the

overhead induced on an application when executing under
the emulator, and the cost of possessing and releasing.

5.1 SEAL
To evaluate the overhead imposed on an application when

emulated by SEAL, we measured the performance of a set
of UNIX programs when run natively and when emulated
by SEAL. We also compare against the Argos full-system
emulator. Our benchmark consists of one CPU-intensive
application with little I/O (bunzip2 ), non-interactive net-
work downloader with little CPU utilisation (wget), a net-
work downloader with encryption (sftp), and one interactive
graphical browser that performs both downloading and ren-
dering (konqueror). Konqueror is the official web browser
and file manager for KDE. With this mix of applications,
we have covered the spectrum of use cases for Eudaemon
fairly well so that the results represent a faithful indication
of expected performance in general.

The experiments were conducted on a dual IntelTM Xeon
at 2.80 GHz with 2 MB of L2 cache and 4 GB of RAM.
The system was running SlackWare Linux 10.2 with kernel
2.6.15.4. The versions of the utilities used were bzip2 v1.0.3,
GNU wget v1.10.2, and konqueror 3.5.4.

We used bzip2 to decompress the Linux kernel 2.6.18 tar
archive which amounts to about 40 MB of data. We used
the UNIX utility time to measure the execution time of the
decompression. For wget, and sftp we fetched the same file
from a dedicated HTTP server over a 100 Mb/s LAN. In
the experiment we used wget and wget ’s own calculation
of the average transfer rate as performance measure. Fi-
nally, we measured the time needed by konqueror to load and
draw an HTML page along with a stylesheet. We used the
loadtime browser benchmarking utility available from http:

//nontroppo.org/test/Op7/loadtime.html to conduct the
measurement, but had it loaded locally to avoid incorporat-
ing variable network latencies in the experiment. Because
of clock skew, a well-known problem with Qemu, we could
not measure this test reliably on Argos. Table 1 shows the
results.

We observe that compared to native execution bunzip2
under SEAL requires about 8.5 times more time to com-
plete. The overhead is fairly large, but this was expected and
can be mainly attributed to the dynamic translator and the
additional instrumentation. Nevertheless, it is much lower
than the performance penalty suffered when using the Ar-
gos system emulator (i.e., if we run the entire OS on Argos),
which compared to a native system was reported to run at
least 16 to 20 times slower [28]. Furthermore, using Eudae-
mon we can choose when to employ emulation, reducing user
inconvenience caused by the slowdown to a minimum.

The results from wget are quite different. The network
transfer of a file was subject to insignificant performance

loss. Wget performs no data processing, and the sole over-
head is imposed by the instrumentation of read and write
calls. The results are encouraging enough to allow for the
possibility of running I/O dominated services such as FTP
and file sharing entirely in emulation mode.

sftp incurs a slowdown of a factor 6.3. In our opinion, this
is surprisingly good considering all the operations on tainted
data involved in ssh. In other work, the reported overhead is
more than two orders of magnitude [4]. We suspect that the
difference is caused by the fact that Eudaemon attaches on
the application after a shared secret key has already been es-
tablished, and therefore does not suffer the initial expensive
connection set up that uses asymmetric encryption.

Konqueror yields the worst results. We ascribe this to
the fact that the GUI, as well as rendering the content, uses
many instructions that incur much overhead in emulation,
including floating point operations as well as MMX opera-
tions.

5.2 Eudaemon
Another important performance metric for Eudaemon is

the time it takes to possess and consequently release a pro-
cess. We examine these two operations from two various
aspects. First we measure the time needed to possess and
release a single process, by calculating the time spent on
each of the two phases of the operations. Second we measure
how process possession scales with an increasing number of
targets.

Table 2 shows the total time needed for the possession and
release of a single process, as well as how this time is dis-
tributed amongst the different phases as they were presented
in Section 4. Possession of a single process takes very little
time to complete. Release spends even less time performing
the two phases, but it is delayed due to waiting for the emu-
lator to exit gracefully. To clarify this point we present the
main execution loop of SEAL in fig.9. After the completion
of the second release stage, Eudaemon is blocked waiting for
the current block of emulated instructions to conclude, and
the emulator to exit its main loop. As a result the target
process is not blocked during this time, and the observed
delay is small.

To measure the performance of Eudaemon when multiple
process are possessed, we created an increasing number of
processes, which we proceed to possess. Figure 8 plots the
time needed to switch a number of processes from native
to emulated execution. The results also include the time
needed to retrieve the PIDs of processes using ps, as well
as to fork() a separate Eudaemon process to perform the
possession for each target. The two graphs shown represent
two different scenarios. In the left graph we possess idle pro-
cesses that at the time of possession are within sleep(), while
in the right graph we possess CPU intensive processes with
100% host CPU utilisation. Even though performance is
lower in the latter, in both cases Eudaemon scales reasonably
well. We believe that this experiment supports our claim
that Eudaemon’s performance is suitable for the idle-time
honeypots and honey-on-demand scenarios as presented in
Section 1.

Regarding security, the emulator used in SEAL was tested
against many types of exploit, including: Apache chunked
encoding overflow, WebDav ntdll.dll overflow, IIS ISAPI
.printer host header overflow, RPC DCOM Interface over-
flow, LSASS Overflow, nbSMTP remote format string ex-

296



bunzip2 wget sftp konqueror
Native Execution 27.99s 10.97MB/s 14.3MB/s 29.4ms

SEAL (1 byte tags) 242.24s 10.92MB/s 2.3MB/s 463.4ms
Slowdown (factor) ×8.6 ×1 ×6.3 ×15.6
Argos (1 byte tags) 508.66s 0.90MB/s 0.55MB/s n/a
Slowdown (factor) ×18.2 ×12.2 26 n/a

SEAL (1 bit tags) 248.78s 10.93MB/s 2.3 725ms
Slowdown (factor) ×8.9 ×1 ×6.3 ×24.5
Argos (1 bit tags) 635.15s 0.49MB/s 0.47MB/s n/a
Slowdown (factor) ×22.7 ×22.4 26 n/a

Table 1: Emulation overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

10 50 100 200

T
im

e 
(s

ec
s)

Number of Processes

Low−load possession average

 0

 100

 200

 300

 400

 500

 600

10 50 100 200
T

im
e 

(s
ec

s)
Number of Processes

High−load possession average

Figure 8: Multiple process possession under low- and high-load

Eudaemon Action Possession Release
1st phase 1.195 0.159
Waiting time not applicable 2782.617

2nd phase 0.095 0.106
Total 1.290 2782.882

Table 2: Eudaemon micro-timings (msec)

while (honeypot_mode == true) {

run_instruction_block();

handle_system_call();

handle_signals();

}

Figure 9: SEAL Execution Loop

ploit, NetApi exploit, WMF exploit, and many others. In-
terested readers are referred to the original Argos paper [28].

6. CONCLUSIONS
We have described Eudaemon, a technique that allows us

to grab a running process and continue its execution in safe
mode in an emulator. The emulator provides extensive in-
strumentation in the form of taint analysis to protect the ap-
plication. It allows us to turn a machine into a honeypot in
idle hours, or to protect applications that are about to per-
form actions that are potentially harmful. We have shown
that the performance overhead of Eudaemon on Linux is
reasonable for most practical use cases. To the best of our
knowledge, this is the first security system that allows one to
force fully native applications to switch to emulation in mid-

processing. We believe it provides an interesting instrument
to increase the security of production machines.

7. ACKNOWLEDGEMENTS
This research is partly funded by the Dutch STW Sen-

tinels DeWorm project and the EU FP6 NoAH project. The
authors would also like to thank Kostas Anagnostakis and
Willem De Bruijn for the constructive criticism and brain-
storming sessions.

8. REFERENCES
[1] Infecting elf-files using function padding for linux.

http://vx.netlux.org/lib/vhe00.html.

[2] Runtime process infection.
http://www.phrack.org/archives/59/p59-0x08.txt.

[3] Writing parasitic code in C.
http://ares.x25zine.org/ES/txt/C-parasites.txt.

[4] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S.
Hand. Practical taint-based protection using demand
emulation. In EuroSys, Leuven, Belgium, April 2006.

[5] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, E. M.
K. Xinidis, and A. D. Keromytis. Detecting targeted
attacks using shadow honeypots. In Usenix Security,
Baltimore, MD, August 2005.

[6] F. Bellard. QEMU, a fast and portable dynamic
translator. In Proc. of USENIX ATC, pages 41–46,
Anaheim,CA, April 2005.

[7] S. Bhansali, W.-K. Chen, S. D. Jong, A. Edwards, and
M. Drinic. Framework for instruction-level tracing and
analysis of programs. In Proceedings of the 2nd
International Conference on Virtual Execution

297



Environments (VEE ’06), pages 154–163, Ottawa,
Canada, June 2006.

[8] S. Bhatkar, D. D. Varney, and R. Sekar. Address
obfuscation: an efficient approach to combat a broad
range of memory error exploits. In Proc. of USENIX
Security, pages 105–120, August 2003.

[9] D. Brumley, J. Newsome, D. Song, H. Wang, and
S. Jha. Towards automatic generation of
vulnerability-based signatures. In Security and
Privacy, Oakland, CA, May 2006.

[10] C. Cowan, S. Beattie, J. Johansen and P. Wagle.
PointGuard: Protecting pointers from buffer overflow
vulnerabilities. In In Proc. of the 12th USENIX
Security Symposium, pages 91–104, August 2003.

[11] J. R. Crandall and F. T. Chong. Minos: Control data
attack prevention orthogonal to memory model. In
Proc. of the 37th annual International Symposium on
Microarchitecture, pages 221–232, Portland, Oregon,
2004.

[12] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hintony, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, PerryWagle and Qian Zhang.
StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In 7th USENIX
Security Symposium, San Francisco, CA, 2002.

[13] W. Cui, V. Paxson, N. Weaver, and R. Katz.
Protocol-independent adaptive replay of application
dialog. In The 13th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA,
February 2006.

[14] W. de Bruijn, A. Slowinska, K. van Reeuwijk,
T. Hruby, L. Xu, and H. Bos. Safecard: a gigabit ips
on the network card. In Proceedings of 9th
International Symposium on Recent Advances in
Intrusion Detection (RAID’06), pages 311–330,
Hamburg, Germany, September 2006.

[15] D. Denning. A lattice model of secure information
flow. ACM Transactions on Communications,
19(5):236–243, 1976.

[16] eEye. eeye industry newsletter.
http://www.eeye.com/html/resources/

newsletters/versa/VE20070516.html#techtal%k,
May 2007.

[17] W. W. Hsu and A. J. Smith. Characteristics of i/o
traffic in personal computer and server workloads.
IBM Systems Journal, 42(2), 2003.

[18] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering code-injection attacks with instruction-set
randomization. In Proc. of the ACM Computer and
Communications Security (CCS), pages 272–280,
Washingtion, DC, October 2003.

[19] N. Krawetz. Anti-honeypot technology. IEEE Security
and Privacy, 2(1):76–79, January 2004.

[20] B. Lampson. Accountability and freedom. In
Cambridge Computer Seminar, Cambridge, UK,
October 2005.

[21] C. Leita, M. Dacier, and F. Massicotte. Automatic
handling of protocol dependencies and reaction to
0-day attacks with scriptgen based honeypots. In
Proceedings of RAID’06, pages 185–205, Hamburg,
Germany, September 2006.

[22] M. E. Locasto, S. Sidiroglou, and A. D. Keromytis.

Application communities: Using monoculture for
dependability. In Proceedings of the 1st Workshop on
Hot Topics in System Dependability (HotDep), pages
288 – 292, Yokohama, Japan, June 2005.

[23] M. E. Locasto, A. Stavrou, G. F. Cretu, and A. D.
Keromytis. From stem to sead: Speculative execution
for automated defense. In Proceedings of the 2007
USENIX Annual Technical Conference, pages
219–232, June 2007.

[24] M. Costa, J. Crowcroft, M. Castro, A Rowstron, L.
Zhou, L. Zhang and P. Barham. Vigilante: End-to-end
containment of internet worms. In In Proc. of the 20th
ACM Symposium on Operating Systems Principles
(SOSP), Brighton, UK, October 2005.

[25] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M.
Levy. A crawler-based study of spyware in the web. In
Proc. of NDSS’06, February 2006.

[26] J. Newsome, D. Brumley, J. Franklin, and D. Song.
Replayer: automatic protocol replay by binary
analysis. In CCS ’06: Proceedings of the 13th ACM
conference on Computer and communications security,
pages 311–321, New York, NY, USA, 2006. ACM
Press.

[27] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection analysis and signature generation
of exploits on commodity software. In Proc. of the
12th Annual Network and Distributed System Security
Symposium (NDSS), 2005.

[28] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
Emulator for Fingerprinting Zero-Day Attacks. In
Proc.of the 1st ACM SIGOPS EUROSYS, Leuven.
Belgium, April 2006.

[29] J. Richter. Load your 32-bit dll into another process’s
address space using injlib. Microsoft Systems Journal
(MSJ), January 1996.

[30] SANS. Sans institute press update. http:
//www.sans.org/top20/2006/press_release.pdf,
2006.

[31] H. Shacham, M. Page, B. Pfaff, E. Goh, and
N. Modadugu. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM
conference on Computer and communications security,
pages 298–307. ACM, 2004.

[32] S. Sidiroglou, M. Locasto, S. Boyd, and A. Keromytis.
Building a reactive immune system for software
services. In Proceedings of the 2005 USENIX Annual
Technical Conference, 2005.

[33] A. Slowinska and H. Bos. The age of data: pinpointing
guilty bytes in polymorphic buffer overflows on heap
or stack. In 23rd Annual Computer Security
Applications Conference (ACSAC’07), Miami, FLA,
December 2007.

[34] P. Szor and P. Ferrie. Hunting for metamorphic. In
Virus Bulletin Conference, pages 123–144, Abingdon,
Oxfordshire, England, September 2001.

[35] J. Tucek, S. Lu, C. Luang, S. Xanthos, Y. Zhou,
J. Newsome, D. Brunmley, and D. Song. Sweeper:a
light-weight end-to-end system for defending against
fast worms. In Proceedings of Eurosys 2007, Lisbon,
Portugal, April 2007.

[36] X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y.
Choi. Packet vaccine: black-box exploit detection and

298



signature generatio n. In CCS ’06: Proceedings of the
13th ACM conference on Computer and
communications security, pages 37–46, New York, NY,
USA, 2006. ACM Press.

[37] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev,
C. Verbowski, S. Chen, and S. King. Automated web
patrol with strider honeymonkeys: Finding web sites
that exploit browser vulnerabilities. In Proc. Network
and Distributed System Security (NDSS), San Diego,
CA, February 2006.

[38] S. M. B. William R. Cheswick, Aviel D. Rubin.
Firewalls and Internet Security: repelling the wily
hacker (2nd ed.). Addison-Wesley, ISBN 020163466X,
2003.

[39] C. C. Zou and R. Cunningham. Honeypot-aware
advanced botnet construction and maintenance. In
The International Conference on Dependable Systems
and Networks (DSN-2006), Philadelphia, PA, USA,
June 2006.

299


